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 Abstract: Background: Few works studied the directed whole-brain interaction between different 

brain regions of Alzheimer’s disease (AD). Here, we investigated the whole-brain effective connec-

tivity and studied the graph metrics associated with AD. 

Methods: Large-scale Granger causality analysis was conducted to explore abnormal whole-brain 

effective connectivity of patients with AD. Moreover, graph-theoretical metrics including small-

worldness, assortativity, and hierarchy, were computed from the effective connectivity network. Sta-

tistical analysis identified the aberrant network properties of AD subjects when compared against 

healthy controls. 

Results: Decreased small-worldness, and increased characteristic path length, disassortativity, and 

hierarchy were found in AD subjects. 

Conclusion: This work sheds insight into the underlying neuropathological mechanism of the brain 

network of AD individuals such as less efficient information transmission and reduced resilience to a 

random or targeted attack 
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1. INTRODUCTION 

 Alzheimer's disease (AD) is a progressive neurodegener-
ative disease with a long incubation period [1]. A gradual 
loss of memory and a decline in cognitive ability are among 
the primary clinical manifestations. As the disease progress-
es, the patients with AD will also show language impair-
ment, personality, and behavior changes which eventually 
affect their everyday lives [2, 3]. It is estimated that 5.7 mil-
lion Americans have Alzheimer's dementia in 2018 [4], 
while in China more than seven million people live with AD 
[5]. However, the pathogenesis of AD is still unclear, and 
much research emphasis has been placed on understanding 
the multifactorial nature of AD. 

 Various neuroimaging techniques have been explored to 
study the pathophysiology underlying AD. Among these are 
positron emission tomography (PET), diffusion tensor imag-
ing (DTI), and functional MRI (fMRI). Resting-state fMRI 
(rs-fMRI), which measures blood oxygenation level-
dependent (BOLD) signals during rest, has been widely em-
ployed to study brain abnormalities of individuals with cog-
nitive impairment such as AD [6], mainly relying on brain 
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connectivity. Brain connectivity has been mainly character-
ized as functional connectivity (FC) and effective connectivi-
ty [7] (EC). FC measures the indirect temporal correlation 
between distributed brain regions [8] and a growing litera-
ture has pinpointed some key FC links with AD [9-11]. EC, 
albeit being more challenging to estimate, supposedly cap-
tures the causal relationship of (BOLD) signals between 
brain regions, providing a way to estimate the directed in-
formation flow underlying the structural pathway [7]. EC 
models the directed coupling of dynamic neural activity, 
attempting to extract causal influences of one region over 
another [7]. In recent years, a few studies have employed EC 
to study brain aberrations of AD individuals [12-16]. For 
example, reduced default mode network (DMN) interactions 
were shown in AD patients compared with healthy controls 
(HC) [15]. They also showed that compared with HC, the 
directed coupling between various brain regions was altered 
in AD patients. Ample research has suggested that the dis-
ease-specific change in effective connectivity throughout the 
brain is closely connected to neurodegenerative processes, 
even though such alterations may only appear in a certain 
part of the brain [17]. However, it is still not well understood 
how changes in whole-brain effective connectivity are relat-
ed to AD. In addition, the works in AD, focusing on the ef-
fective connectivity of whole-brain networks are still rela-
tively limited. 

 Granger causality (GC) can be used to characterize the 
effective connectivity in brain networks, and as a data-driven 
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approach, it requires no prior assumptions [18, 19]. Much of 
the previous research in assessing the causal relationship 
among brain areas has shown that GC can provide the direc-
tionality of regional activities. Granger causality mapping 
(GCM) is a seed-based whole-brain method that has been 
applied to dissect directional connectivity [20-22]. For an 
ROI-based whole-brain network, to avoid the ill-posed and 
under-determined situations when modeling whole-brain EC 
using GC [23, 24], large-scale Granger causality (lsGC) was 
used [25, 26]. After EC patterns were estimated, graph theo-
retical method was used to further analyze these networks to 
explore the pattern of information flow, which has revealed 
many changes of whole-brain network connections that may 
help identify and predict disorders in the nervous system 
[27]. In addition, graph theoretical approaches are receiving 
widespread attention in connectivity research, and many 
studies have found its correlations with cognition and behav-
ior. For example, in an EC study based on GC, betweenness 
centrality and middleman power of some brain regions in 
AD were significantly correlated with behavioral measure-
ment (such as MMSE and CDR) [28]. Graph metrics such as 
global efficiency and small-worldness are often studied in 
the brain network. Previous studies have found that com-
pared to normal people, the brain network of AD patients 
presents lower small-world characteristics [29]. Graph theory 
is a powerful tool for analyzing the separation and integra-
tion of brain network, which will extend to the study of other 
psychiatric diseases [30]. However, the current topological 
analysis based on the directed and weighted whole-brain 
network has not been widely applied. In addition, more at-
tention is needed to explore the overall performance of hu-
man brain network functions and structures, mostly the 
community organization, such as assortativity.  

 Therefore, the main themes of the paper are to investigate 
the causal interaction between brain regions and study the 
aberrations in the topology of brain networks of patients with 
AD. Specifically, graph theoretical method was applied to 
the EC networks of AD and HC to study the abnormal graph 
metrics. In order to study the influence of partial structure 
failure on the whole structure and function of the neural net-
work, the assortative coefficient was investigated whether 
the topological EC network was significantly distinct in AD 
patients. 

2. MATERIALS AND METHODS 

2.1. Subjects 

 The rs-fMRI data of 42 subjects with AD and 42 age and 
gender-matched healthy subjects were obtained from the 
Alzheimer’s disease neuroimaging initiative (ADNI) data-
base1 (http://ADNI.loni.usc.edu). The experimental proto-

                                         
1 Data used in the preparation of this article were obtained 
from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database (adni.loni.usc.edu). The ADNI was 
launched in 2003 as a public-private partnership, led by 
Principal Investigator Michael W. Weiner, MD. The primary 
goal of ADNI has been to test whether serial magnetic reso-
nance imaging (MRI), positron emission tomography (PET), 
other biological markers, and clinical and neuropsychologi-
cal assessment can be combined to measure the progression 
of mild cognitive impairment (MCI) and early Alzheimer’s 

cols carried out in this paper were approved by the ADNI 
Data and Publications Committee. All subjects from the da-
tabase were collected according to ADNI protocol and gave 
an informed consent based on the Helsinki declaration. 
Healthy controls (HC) did not have abnormal memory loss 
and were provided with normal cognitive function. MMSE 
scores of HC were within the range of 24 to 30 and the CDR 
scores were zero. The enrolled AD patients were with MMSE 
score between 20 and 26 and CDR score to be 0.5 or 1.  

2.2. Data Acquisition and Preprocessing 

 The functional imaging data were obtained through a 3-
Tesla scanner following the ADNI protocol. The acquired 
fMRI data were with repetition time (TR) = 3000ms, echo 
time (TE) = 30ms, flip angle = 80

◦
, in-plane resolution/voxel 

size = 3.313 × 3.313 × 3.313mm, slice thickness = 3.313 mm 
and #slice = 48. Each participant collected 140 volumes dur-
ing a trial session. 

 We discarded the first 5 volumes before the scanner 
reached equilibrium, and the remaining 135 volumes under-
went further analysis using SPM8 [31] (www.fil.ion.ucl. 
ac.uk/spm; Wellcome Trust Center for Neuroimaging, Uni-
versity College London, United Kingdom) and Data Pro-
cessing Assistant for Resting-State fMRI advanced edition 
[32] (DPARSFA). The following steps were taken in prepro-
cessing: slice time correction, head motion correction, nor-
malization to MNI space. The rotation of all participants in 
any direction was within 1.5 degrees. The data were then 
smoothed with a 4mm-Gaussian kernel, followed by linear 
detrending and band-pass filtering (0.01-0.08 Hz). Subse-
quently, nuisance covariate regression was carried out to 
control the effect of nuisance signals, including six head mo-
tion parameters, white matter signal, and the cerebrospinal 
fluid (CSF). In order to reduce the influence of the head 
movement on the effective connectivity, scrubbing was per-
formed and the linear interpolation was used to replace the 
images with a framewise displacement greater than 0.5 mm 
[33]. At last, each functional image was parcellated into 246 
regions of interest (ROIs) based on the Brainnetome Atlas 
[34]. 

2.3. Effective Connectivity 

 To explore the causal effect between brain regions, GC 
analysis was employed to estimate the whole-brain infor-
mation flow, which is mostly implemented in a multivariate 
vector autoregressive framework. Since the number of sam-
ples is smaller than the number of ROIs, multivariate vector 
autoregression estimation would be underdetermined and ill-
posed. Therefore, the large-scale Granger causal (lsGC) 
method was applied [26]. The algorithm is described as fol-
lows. 

(1) To reduce the redundancy of the ROI timeseries of 

� � ���� ���� � �����, we performed principal compo-

nents analysis (PCA) and retained the first m compo-

nents with the most variance and all time-series were 

projected into the low-dimensional feature space. 

                                                                      
disease (AD). For up-to-date information, see www.adni-
info.org. 
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(2) Multivariate vector auto-regressive model with time lag 

q (MVAR(q)) was estimated using signals from m-

dimensional feature space as follows: 

� � � ��
�

���
� � � � � � �           (1) 

� � � ��
�

���
� � � �            (2) 

where�� �  is an (m × 1) vector from the dimensionality re-

duced feature space; �� is the estimated (m × m) auto-

regressive coefficient of jth
 lag; ���� is an (m × 1) unobserv-

able zero mean white noise process;�� �  corresponds to the 

estimated time series. 

(3) We removed the r
th

 ROI from �, and re-estimate to the 

MVAR model and fitted value � � ��� �to obtain the in-

fluence of that ROI on all other ROI time series. 

(4) The error from the original model and reduced model 
was compared to compute the GC using the following 
equation after projecting back to high-dimensional sig-
nal space: 

������
� ��

�����������

��������
            (3) 

where ����������� is the variance of error associated with s
th

 

ROI without information from r
th

 ROI and �������� denotes 

the variance of error of s
th

 ROI using the full MVAR model. 

If the error variance of the full model is smaller incorporat-

ing information from r
th

 ROI, then �� Granger-causes ��. 

 Two hyperparameters need to be carefully selected when 

using lsGC method to explore the causal relationships in the 

brain network. One is the number of principal components to 

be kept, which determines how much information is retained; 

the other is the lag order � in the MVAR model. The number 

of principal components was carefully evaluated based on 

the cumulative curve of variance. The curve tends to be satu-

rated as the number of principal components increases, and 

the range in which this saturation point determines the opti-

mal range of the number of principal components. According 

to the previous studies [35, 36], a small lag order (usually on 

the scale of 2 to 3 seconds) was usually used when applying 

GC to fMRI data. The lag order (q) was set to be 2 as TR=3s 

in our study. 

2.4. Graph Properties 

 The directed weighted connection network obtained from 

the lsGC technique was used to calculate the global proper-

ties of the network. Global properties include small-

worldness, �������, ��, ��, hierarchy [37], and multiple types 

of assortativity. These six parameters were described by Ru-

binov and Sporns [38]. For a network G with N nodes, vari-

ous network attributes are characterized as below. 

 Clustering coefficient [39] (��) is the average intensity of 

triangles around a node and describes the degree of node 

aggregation in a graph, which is defined as follows: 

�� �
�

�

��

�������� �
���            (4) 

where �� is the number of edges connected by node i and �� 

is the degree of the node i. 

The characteristic path length (��) describes the optimal path 

of one node to another node and plays an important role in 

the transmission of the network. 

 We generated 1000 random networks preserving the 

same number of nodes, indegree and outdegree distribution 

as the real network to evaluate the small-world topology in 

the EC networks. The small-world attribute is defined as: 

� �
�

�
�

��
�������

����

��
�������

����, where ��
���� and ��

���� were obtained 

via averaging the 1000 corresponding random networks. A 

network is a small-world when � > 1. 

 Global efficiency measures the capability of global in-

formation transmission of the network. 

������� � �
�

������

�

���
�����

          
 (5) 

where ��� is the shortest path length between node i and node 

j. 

 The hierarchy (�) was obtained from the ratio relation-

ship between the nodal clustering coefficient G (local prop-

erty) and nodal degrees k [37, 40]: �����. The index � was 

quantified by fitting a linear regression model between 

log(G) and log(k). A large positive value of β means that the 

hubs of the network have high nodal degree but low nodal 

clustering, indicating that the hub is well-connected while its 

immediate neighbors are not connected between each other, 

forming a "tree-like" structure. Assortativity was used to 

examine if vertices with similar degree/strength tend to con-

nect to each other. In a directed and weighted network, as-

sortativity is roughly divided into three cases: (1) in-strength 

assortativity, which measures the tendency of nodes with 

similar in-strength to be connected; (2) out-strength assorta-

tivity, which measures the tendency of nodes with similar 

out-strength to be connected. (3) assortativity of different 

directions, including the in-strength/out-strength coefficient 

and the out-strength/in-strength coefficient. 

 These graph metrics were calculated over a wide range of 
m (see Section Methods-Effective Connectivity) using Brain 
Connectivity Toolbox [38] (BCT). Prior to calculating vari-
ous network measures, the EC network of each object is 
thresholded to a weighted sparse network. Global cost effi-
ciency [41] defined as global efficiency minus the threshold 
was applied to determine an optimal threshold that depends 
on the dimensionality m. 

2.5. Statistical Analysis 

 To ensure our graph analysis did not depend on the spe-
cific choice of m, we calculated the area under the curve 
(AUC) for each network measure. A two-sample t-test was 
used on the global measures of networks for the group dif-
ference between the HC and AD group. The nonparametric 
Mann-Whitney U test was also evaluated, given the potential 
difference in the variance of each group. FDR correction was 
used for controlling the multiple comparisons of graph 
measures after the tests (p < 0.05, FDR-corrected). 

 A partial correlation analysis was carried out to examine 
the relationships between altered network measures and clin-
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ical variables in the AD patients after controlling for age and 
gender. 

3. RESULTS 

3.1. Demographic and Psychometric Information 

 The rs-fMRI data of 42 AD patients and 42 age- and 
gender-matched healthy controls (HC) were analyzed in this 
study. The demographic information was summarized in 
Table 1. The average disease stage estimated by the Mini-
Mental State Examination (MMSE) was 21.6 ± 3.3 (mean ± 
std), and the average dementia severity evaluated by the 
Clinical Dementia Rating (CDR) score was 0.9 ± 0.3 for AD 
patients. The HC group had an MMSE score of 30 and a 
CDR score of 0. 

3.2. Effective Connectivity Estimation 

 The large-scale Granger causal (lsGC) was applied to 
estimate whole-brain effective network [26], requiring two 
hyperparameters, lag order q and number of principal com-
ponents m. The lag order q was selected to 2 based on a few 
studies [35, 36], and a range of principal components (m) 
between 20 to 37 was explored, which corresponds approxi-
mately between 75% and 90% of the explained variance 
[23], as shown in Fig. (1). 

 

Fig. (1). This figure depicts the trend of explained variance as the 

number of principal components increases. In this work, we deter-

mine the number of principal components between 20 and 37, which 
is the solid line box, based on the trend of explained variance. 

3.3. Abnormal Topological Organization of the Brain 

Connectome 

 Global cost efficiency was calculated, and the thresholds 

of networks were determined across different numbers of 

principle components. The threshold of the directed network 

was chosen based on the number of principle components 

kept [41], which varied from 0.14 to 0.17 (Fig. 2). Graph 

theory approach was used to analyze the effective network. 

Global properties such as small-worldness (�), global effi-

ciency (�������), characteristic path length (��), clustering 

coefficients (��), hierarchy (β) [37], and multiple forms of 

assortativity were evaluated. Generally, with an increasing 

number of principal components, �� and ������� increased, 

whereas both �� and � decreased in both AD and HC groups 

(Fig. 3). We also compared the area under the curve (AUC) 

of global metrics between the two groups. Two-sample t-test 

and Mann Whitney's U test showed significant group differ-

ences in four global properties. More specifically, �  

(HC = 1.152±0.028, AD = 1.091±0.082, p = 1.54×10
-5

) sig-

nificantly decreased in AD group, �� (HC = 236.76±29.15, 

AD = 259.66±52.92, p = 0.016) and β (HC = 0.255±0.043, 

AD = 0.281±0.066, p = 0.032) showed significant increase in 

patients with AD. The assortativity (out-/in-strength correla-

tion) (HC = -0.110±0.023, AD = -0.127±0.035, p = 0.012) 

showed negative increase in AD group (Fig. 4 and Table 2). 

 No significant correlations between graph attributes and 

other clinical data were found. 

4. DISCUSSION 

 We applied large-scale Granger causality (lsGC) algo-

rithm on the rs-fMRI of patients with AD and healthy sub-

jects to investigate the whole-brain effective connectivity 

(EC). Unlike the undirected functional connectivity network 

(FC), EC captured the directed information flow. The 

weighted EC networks in AD demonstrated abnormal topo-

logical properties overall, possibly revealing the mechanism 

underlying the aberrant cognitive function affected by AD.  

 The human brain has been shown to be a small-world 

network that maintains efficient information integration be-

tween spatially distributed brain regions. We found that such 

property was maintained in both normal individuals and AD 

patients, indicating the resilience of the human brain facing 

AD [42, 43]. However, the AD group showed decreased 

small-wordness and an abnormal topology with significantly 

increased characteristic path length (��) in comparison with 

control group, which coincided with the previous findings 

[44]. Larger �� suggested that information transmission 

could be more difficult in AD patients [44]. AD patients 

showed an increase in the distance of information integration 

Table 1. The statistic subjects and psychological assessment information. Abbreviations: MMSE: Mini-mental State Examination; 

CDR: Clinical Dementia Rating. Two-sample t-test was used for p-value(a), a two-tail Pearson chi-square test was used 

for p-value(b). 

Index HC(n=42) AD(n=42) p 

Age(years) 77.7(±6.3) 75.7(±7.1) 0.177a 

Gender(male/female) (18/24) (20/22) 0.157b 

MMSE 29.0(±1.5) 21.6(±3.3) <0.0001a 

CDR score 0.0(±0.1) 0.9(±0.3) <0.0001a 

Note: a: Two-sample t-test was used for p-value, b: a two-tail Pearson chi-square test was used for p-value. 
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Fig. (2). The optimum values of threshold according to global cost efficiency (GCE). (A) shows the optimal thresholds of directed networks 

at different number of principle components (m). (B) shows the process of obtaining the optimal threshold. Each curve with color represents 

the change in global cost efficiency when the threshold increases in a network generated by m principal components. * is the max GCE and 
the corresponding thresholds. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

 

Fig. (3). This figure depicts the trend of small-world network parameters as the number of principal components increases. Every parameter 

was respectively averaged over HC group and AD group at every m value. With m increasing, ������� (a) and �� (b) increase, while �� (c) 

and σ (d) decrease. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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Fig. (4). Difference between HC group and AD group in global metrics. The assortativity (out-/in-strength correlation), hierarchy (�), charac-

teristic path length (��) and small-worldness (σ) appear significant differences among them. (A higher resolution / colour version of this fig-
ure is available in the electronic copy of the article).

 

Table 2. Global graph measures that appear significantly different between HC and AD were calculated over different m values 

and here is the averaged AUC of these measures. 

Global Measures HC(Mean±Std) AD(Mean±Std) P 

Assortativity (out-strength/in-strength) -0.110±0.023 -0.127±0.035 0.012 

Characteristic path length 236.76±29.15 259.66±52.92 0.016 

Hierarchy 0.255±0.043 0.281±0.066 0.032 

Small-worldness 1.152±0.028 1.091±0.082 1.54×10-5 

 

and a decrease in the ability of information transmission. 

This change in the AD brain network can be manifested in 

the patient's behaviors in many forms, such as the decline in 

memory or cognitive ability. In general, all cognitive activi-

ties depend on efficient information integration and trans-

mission capabilities [45, 46]. One of the pathological chang-

es of AD patients is that a large area of neuron death occurs 

in the brain [47]. In the central nervous system, the key brain 

regions, which participate in learning and memory storage, 

will be seriously damaged [48]. As a result, the information 

flow in many brain regions on the pathways supporting im-

portant functions may be disrupted and cause AD patients 

leading to decreased cognitive functions. Thus, we speculat-

ed that the impaired network of AD patients might contribute 

to cognitive decline, which would appear the aberrant struc-

ture with longer ��.  

 As the neurodegenerative disease progresses, only the 
small-world properties are not enough to describe the details 
of its topological alterations. Therefore, we calculated the 
assortativity to explore the network resilience of AD patients 
based on directed weighted EC networks, which measures 
how likely it is for nodes to attach other nodes with similar 

nodal degree. A positive assortative coefficient indicates that 
nodes in a network are preferentially attached to nodes with 
a similar degree, signaling more efficient information pro-
cessing capabilities and stronger resilience to random attacks 
or targeted removal of hubs [46, 49]. In a disassortative net-
work, nodes with a high degree in general tend to be con-
nected to nodes with a lower degree, which is more difficult 
for percolation relative to the corresponding assortative net-
work [50]. However, the above-mentioned studies mostly 
focused on undirected functional networks. In our study, the 
out-/in-strength correlations were negative, and the anatomi-
cal network is disassortative in previous findings [51]. Thus, 
our study suggested the directed functional networks of nor-
mal subjects could not be simply characterized as assortative 
or disassortative, while both patterns were likely to co-exist 
at the same time. 

 In the present study, more negative assortative coeffi-

cients (out-/in-strength correlation), i.e. disassortativity, were 

found in AD patients in contrast to healthy individuals, indi-

cating that nodes with stronger out-strength tended to con-

nect to nodes with weaker in-strength. The phenomenon of 

enhanced disassortativity in AD indicates weaker resilience 
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of the nervous system facing neurodegeneration. This result 

indicates that the brain network is composed of many small 

modules, i.e. hierarchical [52, 53]. Assortativity and hierar-

chy are two complementary topological and structural attrib-

utes [54]. By studying the assortativity of EC networks, the 

hierarchical nature of EC networks can be clearly discov-

ered. A hierarchical network is conducive to communication 

across different levels and requires less wiring cost, but it is 

also more prone to attacks (i.e., removal of hubs [40]). Here, 

the EC network of AD demonstrated a significantly in-

creased hierarchical coefficient, which indicates excessively 

dispersed distribution of hubs [55]. EC network of AD pa-

tients might be limited in terms of wiring cost choices and 

faced a greater risk of hub removal as compared with HC. 

Furthermore, brain regions with high out-strength are gener-

ally more important in the EC network than brain regions 

with weak in-strength, and they are also higher-level brain 

regions from the perspective of hierarchy. Therefore, our 

results demonstrated that the increased disassortativity in AD 

could be interpreted as reduced resilience to random or tar-

geted attacks in the EC network.  

CONCLUSION 

 This study used lsGC to analyze the brain’s effective 

connectome (EC) to study abnormality associated with AD. 

Using graph theoretic methods, we found an abnormal di-

rected network structure in AD patients, in the form of 

anomalous hierarchy, and assortative coefficients. Our re-

sults shed some light into EC aberration related to the poten-

tial neuropathological mechanisms of AD patients. Given the 

novelty of the methodology, future investigation is warranted 

to validate our findings.  
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